Berufsbedingte Infektionen bei Erzieherinnen und Erziehern in Kindergärten

Schlüsselwörter: Kindergärtnерin – Erzieher – Hepatitis A – Cytomegalie – Kinderkrankheiten
Zusammenfassung:

Work related infections in kindergarten workers

Key words: nursery nurse – nursery school teacher – hepatitis A – cytomegalovirus infection – childhood diseases
Summary:
Looking after children, in particular small children, can lead to an infection risk for nursery school teachers. This is why they undergo regular screening tests carried out by occupational physicians. A study of the relevant literature analysed which infection pathogens present an increased risk for nursery school teachers. Retrospectively, going back to 1990, a total of 30 original studies on the infection risk associated with looking after children were identified via Pubmed. There are 6 or 7 original studies each on the hepatitis-A virus, the cytomegalovirus and parvovirus B19 which, taken together, confirm an increased infection risk for nursery school teacher. There are only a few individual publications on Escherichia coli (subtype = 157), varicella, streptococcus pneumoniae, meningococci, the rubella virus, the measles virus, haemophilus influenzae and gardia lamblia. They mainly cover out-breaks. These studies do not provide information on the relative infection risk.
Nursery school teachers who are in regular contact with small children should not only be tested regularly for hepatitis A, perstisits, measles, mumps, varicella and Rubivirus as is the current rule according to the German Ordinance on Biomaternal [Biostoffverordnung] but they should also be examined for cytomegalic inclusion disease and parvovirus B19. With regard to both pathogens, there is an epidemiologically proven, increased infection risk for nursery school teachers and both pathogens can lead to damage to the foetus.

Anschreiben der Autoren:
Prof. Dr. med. Gine Elesner ■ Johann Wolfgang Goethe-Universität, Institut für Arbeitsmedizin ■ Theodor-Stern-Kai 7 ■ Frankfurt am Main Telefon: ++49-69-6301-6630 ■ Fassimile: ++49-69-6301-7053 ■ E-Mail: G.Elesner@em.uni-frankfurt.de
Dr. med. Gabriela Peterite-Haack ■ Johann Wolfgang Goethe-Universität, Institut für Arbeitsmedizin ■ Theodor-Stern-Kai 7 ■ Frankfurt am Main Telefon: ++49-69-6301-6650 ■ Fassimile: ++49-69-6301-7053
Priv.-Doz. Dr. med. Albert Nienhaus ■ Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege, Fachbereich Gesundheitsschutz Pappelallee 35-37 ■ 22085 Hamburg Telefon: ++49-40-202027-3220 ■ Fassimile: ++49-40-202027-3295 ■ E-Mail: albert.nienhaus@bgw-online.de
Einleitung

Methoden

Ergebnisse

Hepatitis A-Viren

Die Hepatitis A gilt als Kinderkrankheit; sie geht nur in seltenen Fällen mit fatalen Folgen einher. Seit eine Impfung auf dem Markt ist, interessiert es zu wissen, ob Kindergärtnerinnen gegenüber der Allgemeinbevölkerung ein erhöhtes Erkrankungsrisiko haben und ob ihnen deshalb eine Impfung angeboten werden solle. Die Tabelle I listet sieben Studien über das Risiko einer Infektion mit HAV bei Kindergärtnerinnen auf.

Tabelle 1: HAV-Infektionen bei Kindergärtnerinnen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor und Jahr</th>
<th>Untersuchungsland</th>
<th>Anzahl (n) der untersuchten Kindergärtnerinnen/Probanden</th>
<th>Risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abdo & Chrise 1990</td>
<td>Deutschland</td>
<td>n = 163 K. (40% anti-HAV pos.) n = 1831 Allgemeinbevölkerung (31% anti-HAV pos.)</td>
<td>OR 1,5*</td>
</tr>
<tr>
<td>2</td>
<td>Dal & Schneider 2001</td>
<td>Deutschland</td>
<td>n = 411 Hepatitis A-Fälle, davon 1 K.</td>
<td>Ø</td>
</tr>
<tr>
<td>3</td>
<td>Hofmann et al. 1992</td>
<td>Deutschland</td>
<td>n = 2293 Krankenhauspersonal Anzahl der K.</td>
<td>RR 3,1 (7)</td>
</tr>
<tr>
<td>4</td>
<td>Jackson et al. 1996</td>
<td>USA (Washington)</td>
<td>n = 360 K. (13% anti-HAV pos.) n = 235 K. (weiß, nicht lateinamerikanischer Abkunft, in USA geboren; 8,5% anti-HAV pos.) n = 1378 westliche Allgemeinbevölkerung (weiß, nicht lateinamerikanischer Abkunft, in USA geboren; 46% anti-HAV pos.)</td>
<td>OR 0,1* ((\text{Betreuung mittleren Kindern < 3 J.}) \text{ OR 2,3 (95% CI 1,1–4,3)}) (\text{Wöchentlich 1 bis 3 Tagen/Woche oder mehr} \text{ OR 2,4 (95% CI 1,3–4,3)}) für K. in Kanada geboren</td>
</tr>
<tr>
<td>5</td>
<td>Jacques et al. 1994</td>
<td>Belgien</td>
<td>n = 413 K. (47,5% anti-HAV pos.) n = 558 Blutspenden (42,8% anti-HAV pos.)</td>
<td>OR 1,48 ((95% \text{ CI } 1,1–1,97)) \text{adjustiert für Alter}</td>
</tr>
<tr>
<td>6</td>
<td>Muecke et al. 2004</td>
<td>Kanada</td>
<td>n = 492 K. (35,6% anti-HAV pos.; 13,4% durch Impfung; 22,2% durch Infektion)</td>
<td>für K. in Kanada geboren pro 5 Jahre \text{Betreuung OR } 1,3 (95% CI 1,0–1,6)</td>
</tr>
<tr>
<td>7</td>
<td>Stücker et al. 1993</td>
<td>Deutschland</td>
<td>n = 412 K. (34,2% anti-HAV pos.) n = 408 Krankenschwestern (32,5% anti-HAV pos.)</td>
<td>OR 1,7*</td>
</tr>
</tbody>
</table>

* eigene Berechnung
HAV = Hepatitis A-Viren; K. = Kindergärtnerin bzw. Kindergärtnerinnen; OR = Odds Ratio; CI = Konfidenzintervall; J. = Jahre; pos. = positiv; Ø = kein Risiko berechnet.

Tabelle 2: CMV-Infektionen bei Kindergärtnerinnen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor und Jahr</th>
<th>Untersuchungsland</th>
<th>Anzahl (n) der untersuchten Kindergärtnerinnen/Probanden</th>
<th>Risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bale et al. 1999</td>
<td>USA (Iowa)</td>
<td>n = 132 K. (57,6% CMV pos.)</td>
<td>Beschäftigung (\rightarrow) 6 J. \text{ OR 3,27 (95% CI 1,26–8,5)}</td>
</tr>
<tr>
<td>2</td>
<td>Ford-Jones et al. 1996</td>
<td>Kanada</td>
<td>n = 203 K. (67% CMV pos.)</td>
<td>Beschäftigung (\rightarrow) 4 J. \text{ Referenz: } ≤ 4 J. \text{ OR 1,38}</td>
</tr>
<tr>
<td>3</td>
<td>Jackson et al. 1996</td>
<td>USA (Washington)</td>
<td>n = 360 K. (62% CMV pos.)</td>
<td>Beschäftigung (\rightarrow) 1 J. \text{ OR 1,3 (95% CI 1,0–1,7)}</td>
</tr>
<tr>
<td>4</td>
<td>Joseph et al. 2005</td>
<td>Kanada</td>
<td>n = 473 K. (57% CMV pos.)</td>
<td>Betreuung von > 6 Kindern \text{ Referenz: } ≤ 6 \text{ OR 1,87 (95% CI 1,25–2,81)}</td>
</tr>
<tr>
<td>5</td>
<td>Kiss et al. 2002</td>
<td>Belgien</td>
<td>n = 211 K. n = 283 Verwaltung n = 494 Probanden (39,9% CMV pos.)</td>
<td>OR 1,54 (95% CI 1,01–2,35)</td>
</tr>
<tr>
<td>6</td>
<td>Murph et al. 1991</td>
<td>USA (Iowa)</td>
<td>n = 252 K. (38% CMV pos.)</td>
<td>(?)</td>
</tr>
<tr>
<td>7</td>
<td>Pass et al. 1990</td>
<td>USA (Alabama)</td>
<td>n = 425 K. (63% CMV pos.) n = 39 Verwaltung (89% CMV pos.)</td>
<td>Betreuung von Kindern (≤ 2) J. für 8 h pro Woche \text{ OR 1,4}</td>
</tr>
</tbody>
</table>

* eigene Berechnung
CMV = Cytomegalieviren; K. = Kindergärtnerinnen; OR = Odds Ratio; CI = Konfidenzintervall; J. = Jahre; pos. = positiv
Allen sieben Studien mangelt es an geeigneten Kontrollgruppen. Entweder wurde die Durchsuchung der allgemeinen Bevölkerung als Vergleichsgruppe ausgewählt (Abdo & Chriske 1990, Jackson et al. 1996), oder es wurden Vergleiche mit Blutspendern (Jacques et al. 1994) oder mit Krankenpflegepersonal (Stück et al. 1993) angestellt. Werden die mit diesen Vergleichsgruppen errechneten Risiken betrachtet, so ergeben sich Risiken in Form von Odds Ratios von 0,1–3,1 (wobei die letztgenannte Zahl aus einer Arbeit von Hofmann et al. [1992] stammt, ohne dass die Berechnungsgrundlage nachvollzogen werden kann). Ansonsten ergeben sich für die Untersuchungen aus Europa (Belgien und Deutschland) Odds Ratios in Höhe von 1,48–1,7. Für die USA lassen sich erhöhte Infektionsrisiken in Form von Odds Ratios errechnen, wenn eine tägliche Beschäftigung mit Kindern unter drei Jahren erfolgt (OR 2,3; 95% CI 1,1–4,6); wenn Windeln an mindestens drei Tagen in der Woche gewechselt werden, lässt sich für die US-amerikanische Studie eine OR von 2,4 errechnen (95% CI 1,3–4,3). Auch in der kanadischen Studie steigt rechnerisch das Risiko mit der Dauer der Beschäftigung als Kindergärtnerin: Nach Kontrolle für das Alter nimmt die OR bei längerer Beschäftigungsdauer (Fünf-Jahres-Klassen) einen Wert von 1,3 an (95% CI 1,0–1,8). Das bedeutet, dass, nach jeweils fünf Jahren Beschäftigung steigt das Infektionsrisiko um ca. 30%. Zusammenfassend ergeben die Daten Hinweise auf eine erhöhte Infektionsanfälligkeit bei Kindergärtnerinnen mit HAV gegenüber der allgemeinen Bevölkerung.

Cytomegalieiren

Eine Infektion mit Cytomegalieiren wird deshalb besonders häufig thematisiert, weil es sich bei den Betreuerinnen von Kindergartengästchen in der Regel um junge gebärfähige Frauen handelt und weil die Cytomegalien in der Lage sind, das ungeborene Kind zu schädigen. Eine Impfung gegen CMV gibt es nicht. Die Tabelle 2 gibt einen Überblick über die Publikationen, die eine Infektion mit CMV bei Kindergärtnerinnen behandeln.

Parvoviren B 19

In den Studien über Schwangere wurden auch die Berufstätigkeiten der Frauen aufgeleistet. In der US-amerikanischen Studie aus Connecticut fanden sich 42 seropositive Kindergärtnerinnen unter 479 infizierten Schwangeren; die Autoren vermuten ein etwas erhöhtes Krankheitsrisiko bei Kindergärtnerinnen. Bei den übrigen Studien ist in einem Fall-Kontroll-Ansatz das Risiko
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor und Jahr</th>
<th>Untersuchungsland</th>
<th>Anzahl (n) der untersuchten Kindergärtnerinnen/Probanden</th>
<th>Risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carter et al. 1991</td>
<td>USA (Connecticut)</td>
<td>n = 917 Schwangere (53% seropositiv) n = 479 Infizierte, davon n = 42 K. (69%)</td>
<td>(7)</td>
</tr>
<tr>
<td>2</td>
<td>Gilbert et al. 2005</td>
<td>Kanada</td>
<td>n = 477 K. (59,8% IgG pos.)</td>
<td>Beschäftigungsduer < 5 u. 6. 15 J. OR 1,28 (95% CI 1,08–1,52) Alter der betreuten Kinder < 18 Monate (Referenz: 18–35 Monate) OR 2,35 (95% CI 1,24–4,43)</td>
</tr>
<tr>
<td>3</td>
<td>Gonçalves et al. 2005</td>
<td>Portugal</td>
<td>n = 6 K. (davon 1 K. infiziert = 17%)</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>Harger et al. 1998</td>
<td>USA (Pennsylvania)</td>
<td>n = 618 Schwangere (58% seropositiv) n = 42 K. (69% seropositiv); sonstige Berufstätige n = 576 (57% seropositiv)</td>
<td>OR 1,7*</td>
</tr>
<tr>
<td>5</td>
<td>Jensen et al. 2000</td>
<td>Dänemark</td>
<td>n = 2859 Schwangere (66% IgG pos.) n = 470 ‚Arbeit mit Kindern‘ (59% IgG pos.) sonstige n = 2389 (57% pos.)</td>
<td>OR 0,7*</td>
</tr>
<tr>
<td>6</td>
<td>Valeur-Jensen et al. 1999</td>
<td>Dänemark</td>
<td>n = 30846 Schwangere (65% IgG pos.) 390 K. (77% pos.) Referenz: n = 17655 Berufstätige ohne Erziehungsberufe (65,4% pos.)</td>
<td>OR 1,83 (95% CI 1,43–2,33) adjustiert für Alter, Einkommen, Dauer der Ausbildung, ethnische Herkunft</td>
</tr>
</tbody>
</table>

* eigene Berechnung
K. = Kindergärtnerin bzw. Kindergärtnerinnen; OR = Odds Ratio; CI = Konfidenzintervall; J. = Jahre; pos. = positiv

von Kindergärtnerinnen, sich mit dem Parvovirus B 19 anzustecken, im Vergleich zu anderen Berufstätigen auszurechnen. Beim Vergleich der Kindergärtnerinnen mit allen anderen Berufstätigen lassen sich Odds Ratios von 0,7 bzw. 1,7 errechnen (Jensen et al. 2000, Harger et al. 1998). In der dänischen Studie von Valeur-Jensen et al. (1999) wurde beim Vergleich von Kindergärtnerinnen mit Berufstätigen ohne Erziehungsberufe eine adjournierte OR von 1,83 kalkuliert (95% CI 1,43–2,33). Eine weitere Studie aus Kanada (Gilbert et al. 2005) untersuchte die Antikörperprävalenz bei 477 Kindergärtnerinnen und fand eine Durchseuchung mit IgG-Antikörpern von 69,8%. Beim Vergleich der Kindergärtnerinnen mit kurzer Beschäftigungsdauer mit denen mit langer Beschäftigungsdauer ließ sich eine OR von 1,28 errechnen (95% CI 1,08–1,52). Auch bei der Betreuung von jüngeren Kindern nahm das Risiko zu. Wenn die Kindergärtnerinnen, die Kinder im Alter von 18 bis 35 Monaten betreuten, als Referenzgruppe gewählt wurden, so errechnete sich für die Kindergärtnerinnen, die für Kinder in einem Alter unterhalb von 18 Monaten zuständig waren, eine OR von 2,35 (95% CI 1,24–4,43). Eine letzte Studie beschreibt einen Ausbruch der Krankheit in Portugal (Gonçalves et al. 2005): Bei einem Krankheitsausbruch, bei dem 12 Kinder infiziert waren, fand sich eine erkrankte Kindergärtnerin von insgesamt sechs Betreuerinnen. Zusammenfassend scheint das Risiko von Kindergärtnerinnen, sich mit dem Parvovirus B 19 anzustecken, erhöht zu sein.

Colibakterien

Infektionen mit Varizellen-Zoster-Viren

Infektionen mit sonstigen Erregern

Tabelle 6: Infektionen mit sonstigen Erregern

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor und Jahr</th>
<th>Untersuchungsland</th>
<th>Erregern</th>
<th>Anzahl (n) der untersuchten Kindergärtnerinnen/Probanden</th>
<th>Risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ang 2000</td>
<td>Großbritannien</td>
<td>Giardia lamblia</td>
<td>n = 12 K. (1 infiziert) 50 Kinder (10 infiziert)</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>Christensson et al. 1997</td>
<td>Schweden</td>
<td>Streptococcus pneumonia</td>
<td>n = 308 K. (9% asymptomatisch infiziert mit nicht-resistenten Streptokokken)</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>De Wals et al. 2004</td>
<td>./</td>
<td>Meningokokken</td>
<td>Review, keine infizierte K.</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Gyorkos et al. 2005</td>
<td>Kanada</td>
<td>Rötelniren</td>
<td>n = 481 K. (89,6% seropositiv)</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>Jackson et al. 1996</td>
<td>USA (Washington)</td>
<td>Maserniren</td>
<td>n = 360 K. (94% seropositiv)</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>Mo Vernon et al. 2004</td>
<td>Großbritannien</td>
<td>Haemophilus influenzae, Typ B (HIB)</td>
<td>n = 21 K. (1 infiziert) n = 94 Kinder (3 infiziert)</td>
<td></td>
</tr>
</tbody>
</table>

K = Kindergärtnerin bzw. Kindergärtnerinnen; Ø Risiko nicht erhöht

Diskussion

Alle anderen Studien verweisen auf eine Risikoerhöhung, so dass zusammenfas- send davon ausgegangen werden kann,

Schlussfolgerung

In einer Literaturrecherche in der PubMed-Datenbank wurden 30 publizierte Studien über Infektionskrankheiten bei Kindergärtnerinnen analysiert. Eine Beschränkung erfolgte auf Literatur ab 1990 und auf Literatur aus Europa (frühere Ostblock-Länder ausgenommen) und auf Nordamerika. Im Ergebnis stellt sich ein erhöhtes Infektionsrisiko für
HAV, CMV and Parvoviren B 19 dar. Da-
nach können diese Erkrankungen, wenn
sie bei Kinderärztinnen und Infektionen
bestanden, als Berufsgefahren aner-
kannt werden. Da CMV und Parvoviren
B 19 in der Lage sind, ungeborene Kin-
der zu schädigen, erstreckt sich der mög-
liche Entschädigungsanspruch auch auf die
ungeborenen Kinder.
Erzieherinnen werden, wenn sie regel-
mäßig Kontakt zu kleinen Kindern ha-
ben, entsprechend der Biostoffverord-
nung routinemäßig auf Hepatitis A, Per-
tussis, Masern, Mumps, Varizellen und
Rötelnvirien bzw. dem entsprechenden
Impfstatus untersucht (Anhang IV). Ver-
pflichtende arbeitsmedizinische Vorsor-
geuntersuchungen. Die Ergebnisse die-
sen Literaturanalyse sprechen dafür, die
Erzieherinnen auch auf Kontakt zu Cyto-
megalie-Viren und Parvoviren B19 (Ringelfröten) zu untersuchen, wie das von einigen Ländern (NRW, Bayern) be-
reits empfohlen wird. Für beide Erreger
besteht ein epidemiologisch belegtes er-
höhtes Infektionsrisiko bei Erzieheri-
nen, und beide Erreger können zu Schä-
digungen des Fetus führen. Eine Impf-
möglichkeit besteht für beide Erreger
nicht. Eine Information zum Immunsta-
 tus kann das Präventionsverhalten aber
positiv beeinflussen.

Literaturverzeichnis
Abdo R., Chirke H. (1990): HAV-Infektionsrisi-
ken im Krankenhau, Altenheim und Kinder-
tagesstätten. In: Hoffmann F & Stöbel U (eds.),
Arbeitsmedizin im Gesundheitsdienst, Band 5,
Gonner Verlag, Stuttgart.
Escherichia coli O 157 in a nursery: lessons for
prevention. Arch Child 81: 60-63
coli O:157: Outbreak in a day nursery. Comm-
un Dis Report S: R4-R6
Ang L (2000): Outbreak of Giardiasis in a
day-care nursery. Commun Dis Public Health
3: 212–23
Bale J, Zimmermann B, Dawson J, Soatta I,
Peherar S, Murphy J (1999): Cytomegalovirus
transmission in child care home. Arch Pediatr
Adolesc Med 153: 75-79
Bayern – Umwelt, Gesundheit und Verbrau-
cherschutz. Hinweise für Arbeitgeber, Beschä-
figte und Betriebsräte zum Vollzug der Bi-
stoffverordnung und des Mutter-Kinderschutzgesetzes
in Einrichtungen zur vorschulischen Kinder-
betreuung, Stand Juni 2008
www.stmvg.bayern.de/arbeitsschutz/sozial/
doc/hinweise_2008_0a.pdf
Carter M, Farley Th, Rosenstein S, Quinn D,
Gillespie S, Gary G, Hadler J (1999): Occupa-
tional risk factors for infection with Parvovirus B
19 among pregnant women. Inf Infect Dis 163:
282-287
Christensen B, Sylvan N, Olesen B (1997): Car-
carriage of multi-resistant Streptococcus pneu-
moniae among children attending day-care cen-
ters in the Stockholm area. Scand J Infect Dist
19: 555-558
De Wals Ph, Deshais P, De Serres G, Duval B,
Grosel L, Pouilloux B, Ricard S, Pouilloux M (2004):
Risk and prevention of Meningococcal disease
among education workers: A review. Can J In-
fect Dis 15: 89-93
Dorf R, Schneider S (2001): Transmission of
Hepatitis A in Hamburg, Germany, 1998-1999
– a prospective population based study. Eur J
Infectious Diseases 17:175-182
Ford-Jones E, Kita I, Davis L, Corey M, Farrell
H, Petro M, Kyle I, Heath J, Yaffe B, Kelly E,
infections in Toronto child-care centers: A pro-
fpective study. Pediatrics Infectious Disease
13: 220-224
Garcia A, Alberio G, Peloza A, Fagerlund
B (2003): Outbreak of parvovirus B19 infection
in day-care educators. Pediatr Infect Dis J: 9:
157-160
the evaluation of 618 pregnant women exposed to
Parvovirus B19: Risk and symp-
toms. Obstet Gynecol Neonat 91: 413-420
Hoffman E, Wehrle G, Berthold H,Köster D
Vaccine 10: 582-584
Hoffman E, Nühling M, Mller F (1997): Infek-
tionen mit dem Varicella-Zoster-Virus – arbeits-
und sozialmedizinische Aspekte. Arbeitsmedizin
und Berufsgenossenschaften 12: 219-224
Jackson L, Stewart L, Solomon B, Stose J,
Alexander E, Heath J, McQuillan G, Coleman P,
Roberts E (2005): Risk of infection with Hepatitis A,
B or C, Cytomegalovirus, Varicella or Measles among
care workers. Pediatr Infect Dis J 20: 584-589
Jacques P, Moens G, Van Damme P, Goubau P,
Vranckx R, Steeno J, Muyldere L, Desmyter J
(2004): Increased risk for Hepatitis C among
female day nursery workers in Belgium. Occu-
pin Infect Dis 44: 259-261
Jensen L, Thomsen P, Jeune B, Møller P,
Vestergaard B (2000): An epidemic of Parvo-
ivirus B 19 in a population of 3596 pregnant
women: study of sociodemographic and medical
Joseph S, Believau C, Muecke E, Rahme E,
Soto J, Flowerdew G, Johnston L, Lauville D,
Gyorkos Th (2005): Risk factors for Cytome-
galovirus seropositivity in a population of
care day educators in Montréal, Canada. Occu-
ped Infect Med 55: 564-567
Kiss Ph, Bacquaert D, Segorsis L, De Meester
M, Vanhoorne M (2002): Cytomegalovirus infec-
tion: an occupational hazard to kindergarten
teachers working with children ages 2.5–6 years.
Int J Occup Environ Health 8: 79–86
NBW – Ministerium für Arbeit, Gesundheit
und Soziales des Landes Nordrhein-Westfalen. Hin-
weise zum Mutterschutz und zu arbeitsrechtli-
chen Fragen werdender Mütter
http://www.arbeitsschutz.nrw.de/bp/
good_practice/Besondere/Elengruppen/
mucih.htm, herausgegeben am 1.11.2008
Mücke E, Béliveau C, Rahme E, Soto J,
Gyorkos Th (2004): Hepatitis A seroprevalence
and risk factors among day-care educators. Clin
Invest Med 27: 259-64
Murphy J, Baron J, Brown C, Beshbach L, Bale J
(1995): The occupational risk of Cytomegalovirus
infection among day-care providers. JAMA
265: 603-608
McVernon J, Morgan P, Mallagun C, Biauw T,
Natarajan M, Griffiths D, Slack M, Moron
X (2004): Outbreak of Haemophilus influenzae
type B disease among fully vaccinated children
in a day-care center. Pediatr Infect Dis J: 38:41
O'Donnell J, Thorton L, McNamara E, Pendergast
T, Igne D, Cosgrove C (2004): Out-
break of Vero cytotoxin-producing Escherichia
coli O 157 in a child day care facility. Commun
Dis Public Health 5: 24-58
Pass R, Huto C, Lyon M, Cloud G (1990): In-
creased rate of Cytomegalovirus infection among
day-care center workers. Pediatr Infect Dis J: 9:
465-470
Reida P, Wolff M, Pötts H-W, Kuhlmann W,
Lehmacher A, Aleksić St, Kärch H, Beckernmuth
J (1994): Ein outbreak due to Enterohaemor-
rhagic Escherichia coli O 157: H7 in a children's
day-care center characterized by person-to-person
transmission and environmental contamination.
Zbl Bakter 201: 354-363
Reid R, Pott M, Pötsch H-W, Kuhlmann W,
Lehmacher A, Aleksić St, Kärch H, Beckernmuth
J (1994): Ein outbreak due to
Enterohaemorrhag-
Lupniger U, Persson J, Gyllensten A, Deinhardt A,
Smed Petersson, Eime K, Sjöstedt S, Wesslén
S (2005): Prevalence of Cytomegalovirus
infection among Swedish day-care
workers and their
Vujadinovic D, Kocić M, Božić D, Žekić N,
Lukić J, Crnojević S, Kostić T, Adamic D,
and risk factors of Cytomegalovirus
infection among children aged between 0.5 and
Wurtz E, Färber L, Wagemrief S, Bišan H,
Tischer A (2003): Seroprevalence of varicella-
zoster virus in the German population. Vacc-
ination 20: 121-124

Berufsbedingte Infektionen bei Erzieherinnen und Erziehern in Kindergärten